欢迎来到高考学习网,

[登录][注册]

免费咨询热线:010-57799777

高考学习网
今日:1530总数:5885151专访:3372会员:401265
当前位置: 高考学习网 > 【新步步高】2017版高考数学(文 全国乙卷)二轮复习与增分策略三轮增分练:高考大题纵横练(2)

【新步步高】2017版高考数学(文 全国乙卷)二轮复习与增分策略三轮增分练:高考大题纵横练(2)

资料类别: 数学/同步

所属版本: 通用

所属地区: 全国

上传时间:2017/1/12

下载次数:163次

资料类型:

文档大小:123KB

所属点数: 0

普通下载 VIP下载 【下载此资源需要登录并付出 0 点,如何获得点?
高考大题纵横练(二)
1.(2015·陕西)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:
T(分钟)	25	30	35	40		频数(次)	20	30	40	10		
(1)求T的分布列与数学期望E(T);
(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
解 (1)由统计结果可得T的频率分布为
T(分钟)	25	30	35	40		频率	0.2	0.3	0.4	0.1		
以频率估计概率得T的分布列为
T	25	30	35	40		P	0.2	0.3	0.4	0.1		
从而E(T)=25×0.2+30×0.3+35×0.4+40×0.1
=32(分钟).
(2)设T1,T2分别表示往,返所需时间,T1,T2的取值相互独立,且与T的分布列相同,
设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.
方法一 P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.
方法二 P()=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)
=0.4×0.1+0.1×0.4+0.1×0.1=0.09,
故P(A)=1-P()=0.91.
2.(2016·天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asin 2B=bsin A.
(1)求B;
(2)若cos A=,求sin C的值.
解 (1)在△ABC中,由=,
可得asin B=bsin A.
又由asin 2B=bsin A,
得2asin Bcos B=bsin A=asin B,
所以cos B=,所以B=.
(2)由cos A=,可得sin A=,则
sin C=sin[π-(A+B)]=sin(A+B)=sin
=sin A+cos A=.
3.(2016·四川)如图,在四棱锥PABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.

(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(2)证明:平面PAB⊥平面PBD.
(1)解 取棱AD的中点M(M∈平面PAD),点M即为所求的一个点,理由如下:

因为AD∥BC,BC=AD.
所以BC∥AM,且BC=AM.
所以四边形AMCB是平行四边形,从而CM∥AB.
又AB平面PAB,CM平面PAB.
所以CM∥平面PAB.
(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)
(2)证明 由已知,PA⊥AB,PA⊥CD.
因为AD∥BC,BC=AD,所以直线AB与CD相交,

所以PA⊥平面ABCD,从而PA⊥BD.
连接BM,因为AD∥BC,
BC=AD,M为AD的中点,
所以BC∥MD,且BC=MD.
所以四边形BCDM是平行四边形,
所以BM=CD=AD,所以BD⊥AB.
又AB∩AP=A,所以BD⊥平面PAB.
又BD平面PBD,所以平面PAB⊥平面PBD.
4.(2016·山东)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(1)求数列{bn}的通项公式;
(2)令cn=,求数列{cn}的前n项和Tn.
解 (1)由题意知,当n≥2时,an=Sn-Sn-1=6n+5.
当n=1时,a1=S1=11,符合上式.
所以an=6n+5.
设数列{bn}的公差为d,
由即
解得所以bn=3n+1.
(2)由(1)知cn==3(n+1)·2n+1..
又Tn=c1+c2+…+cn,
得Tn=3×[2×22+3×23+…+(n+1)×2n+1],
2Tn=3×[2×23+3×24+…+(n+1)×2n+2],
两式作差,得
-Tn=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]
=3×
=-3n·2n+2.
所以Tn=3n·2n+2.
5.(2015·课标全国Ⅱ)已知函数f(x)=ln x+a(1-x).
(1)讨论f(x)的单调性;
(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.
解 (1)f(x)的定义域为(0,+∞),f′(x)=-a.
若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.
若a>0,则当x∈时,f′(x)>0;
当x∈时,f′(x)<0.
所以f(x)在上单调递增,
在上单调递减.
(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;
当a>0时,f(x)在x=处取得最大值,最大值为f =ln+a=-ln a+a-1.
因此f >2a-2等价于ln a+a-1<0.
令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,
g(1)=0.
于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.
因此,a的取值范围是(0,1).
6.(2015·陕西)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.

(1)求椭圆E的离心率;
(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.
解 (1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,
则原点O到该直线的距离d==,
由d=c,得a=2b=2,解得离心率=.
(2)方法一 由(1)知,椭圆E的方程为x2+4y2=4b2.①
依题意,圆心M(-2,1)是线段AB的中点,且|AB|=.
易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,代入①得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0,
设A(x1,y1),B(x2,y2),则x1+x2=-,
x1x2=,
由x1+x2=-4,得-=-4,解得k=,
从而x1x2=8-2b2.
于是|AB|=|x1-x2|
==,
由|AB|=,得=,解得b2=3,
故椭圆E的方程为+=1.
方法二 由(1)知,椭圆E的方程为x2+4y2=4b2,②
依题意,点A,B关于圆心M(-2,1)对称,且|AB|=,设A(x1,y1),B(x2,y2),则x+4y=4b2,x+4y=4b2,
两式相减并结合x1+x2=-4,y1+y2=2,得-4(x1-x2)+8(y1-y2)=0,
易知AB与x轴不垂直,则x1≠x2,
所以AB的斜率kAB==,
因此直线AB的方程为y=(x+2)+1,
代入②得x2+4x+8-2b2=0,
所以x1+x2=-4,x1x2=8-2b2,
于是|AB|=|x1-x2|
==.
由|AB|=,得=,解得b2=3,
故椭圆E的方程为+=1.














高考学习网-中国最大高考学习网站Gkxx.com | 我们负责传递知识!


































本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请联系并提供证据(kefu@gkxx.com),三个工作日内删除。

精品专题more

友情链接:初中学习网人民网高考网易高考高中作文网新东方冬令营