欢迎来到高考学习网,

[登录][注册]

免费咨询热线:010-57799777

高考学习网
今日:1530总数:5885151专访:3372会员:401265
当前位置: 高考学习网 > 湖北省荆州中学2018届高三第二次月考数学(理)试卷

湖北省荆州中学2018届高三第二次月考数学(理)试卷

资料类别: 数学/试题

所属版本: 通用

所属地区: 湖北

上传时间:2017/9/7

下载次数:280次

资料类型:月考/阶段

文档大小:583KB

所属点数: 0

普通下载 VIP下载 【下载此资源需要登录并付出 0 点,如何获得点?

荆州中学2018届高三第二次月考数学卷(理科)

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 若复数Z满足(为虚数单位),则Z的共轭复数为(   )
A. 			B. 			C. 			D. 
2. 已知变量和的统计数据如表
	6	8	10	12			2	3	5	6		根据上表可得回归直线方程,据此可以预测,当时,(   )
A. 7.2				B. 7.5				C. 7.8				D. 8.1
3.已知是不同的直线,是不同的平面,命题:(1)若,则;(2)若则;(3)若,则;(4)若则;(5)若则 ;错误命题的个数是(   )
A. 1			B.2				C. 3				D.4
4. 已知都是第一象限角,那么是的 (   )
A. 充分不必要条件			
B. 必要不充分条件
C. 充要条件				
D. 既不充分又不必要条件
5. 我们可以用随机数法估计的值,如图所示的程序
框图表示基本步骤(函数RAND是产生随机数的函数,
它能随机产生(0.1)内的任何一个实数).若输出的结
果为524,则由此可估计的近似值是(   )
A. 3.124
B. 3.134
C. 3.144
D. 3.154

6. 某几何体的三视图,如图所示,则该几何何的体积为(   )
A. 20		B. 40		C. 80		D. 160
7. 已知
,则(   )
A. 			B. 
C. 			D. 
8. 已知,则的最小值为 (   )
A.4 				B. 8				C. 9				D. 6
9. 一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人作了案”;丁说:“乙说的是事实”。经过调查核实,四个人中有两个人说的是真话,另外两人说的是假话,且这四个人中只有一名罪犯,说真话的人是 (   )
A. 甲、乙			B. 甲、丙			C. 乙、丁			D. 甲、丁
10. 倾斜角为的直线经过原点与双曲线的左、右两支于两点,则双曲线离心率的取值范围为 (   )
A. 	  B. 	  C.    D. 
11. 某种植基地将编号分别为1, 2,3,4,5,6的六个不同品种的马铃薯种在如图所示的
A	B	C	D	E	F		这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 (   )
A. 360种			B. 432种				C. 456种				D. 480种
12. 已知函数方程有6个不同的实根,则取值范围(   )
A. 			B. 			C. 		D. 
二、填空题(本大题共4小题,每小题5分,共20分)
13. ______________.
14.已知函数,若则___.
15.已知抛物线的焦点为的顶点都在抛物线上,且是的重心,则 ______________.
16.已知函数满足:①对任意的,都有;②对任意的都有.则______________.

三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)
17.(本题12分)已知,且是实常数,
(1)讨论的单调性;
(2)求在[-1,2]上的最大值.

18.(本题12分)某影院为了宣传影片《战狼Ⅱ》,准备采用以下几种方式来扩大影响,吸引市民到影院观看影片,根据以往经验,预测:
①分发宣传单需要费用1.5万元,可吸引30%的市民,增加收入4万元;
②网络上宣传,需要费用8千元,可吸引20%的市民,增加收入3万元;
③制作小视频上传微信群,需要费用2.5万元,可吸引35%的市民,增加收入5.5万元;
④与商场合作需要费用1万元,购物满800元者可免费观看影片(商场购票),可吸收15%的市民,增加收入2.5万元,
问: (1)在三个观看影片的市民中,至少有一个是通过微信群宣传方式吸引来的概率是多少?
(2)影院预计可增加盈利是多少?
19.(本题12分)菱形中,与相交于,平面,,
(1)求证:面;
(2)当为何值时,二面角的大小为.




20.(本题12分)已知抛物线与圆,直线与抛物线相切于,与圆相切于
(1)当为时,求抛物线的方程;
(2)上点,求证:以为切点的抛物线的切线方程为


21.(本题12分)已知函数
(1) 若,求的图象在处的切线方程;
(2)若在定义域上是单调函数,求的取值范围;
(3)若存在两个极值点,求证:


22.(本题10分)已知是实数,命题函数是定义域为的偶函数,命题函数是R上的减函数,若为真命题,为假命题,求的取值范围.
荆州中学2018届高三第二次月考数学卷(理科)
一、选择题
题号	1	2	3	4	5	6	7	8	9	10	11	12		答案	A	B	C	D	C	A	D	B	B	A	A	D		
二、填空题
13. 		  14. 2017			15. 0	    	16. 66

三、解答题
17. (1)
  若时,则,在上的增函数
若时,,则在上的减函数
(2)由(1)知,当时,
当时,

18. 1. 设事件A:不是通过微信宣传方式吸引来的观众,则
设事件B:三名观众中至少有一个是通过微信宣传方式吸引的观众,
则
2. 万元

19. (1)面
(2)由(1)知 是二面角的平面角,

      

20. (1)  的方程为
联立方程组 得     抛物线方程为
(2)设切线方程为    联立方程组 得  
由得切线方程可化为
切点的纵坐标为        代入得 
   即 

21. (1)       切线方程为
(2)  依题意有或在上恒成立,即或在上恒成立,显然不可能恒成立,  
(3)由得,即是的两根
,

由已知       
   

22. 命题真时,的取值范围为
命题真时,的取值范围为
所求的取值范围为













高考学习网-中国最大高考学习网站Gkxx.com | 我们负责传递知识!


开始

开始











否

输出

是

结束

是

否

5

4

3

正视图

侧视图

俯视图

O

C

B

A

E

D

F



本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请联系并提供证据(kefu@gkxx.com),三个工作日内删除。

精品专题more

友情链接:初中学习网人民网高考网易高考高中作文网新东方冬令营